Hydrogenation reactions of kerosene on nickel-based catalysts


Komurcu H., Yılmaz K., Gürdal S., Yaşar M.

International Journal of Hydrogen Energy, cilt.48, sa.60, ss.22934-22941, 2023 (SCI-Expanded) identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 48 Sayı: 60
  • Basım Tarihi: 2023
  • Doi Numarası: 10.1016/j.ijhydene.2022.06.189
  • Dergi Adı: International Journal of Hydrogen Energy
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, PASCAL, Artic & Antarctic Regions, Chemical Abstracts Core, Communication Abstracts, Environment Index, INSPEC
  • Sayfa Sayıları: ss.22934-22941
  • Anahtar Kelimeler: Hydrotreating, Kerosene, Nickel catalyst, Rocket grade fuel
  • Çanakkale Onsekiz Mart Üniversitesi Adresli: Evet

Özet

© 2022 Hydrogen Energy Publications LLCThe hydrotreating of kerosene was studied to develop a crude kerosene distillate to produce products with specifications suitable for marketing as kerosene and rocket grade fuel. To saturate the aromatic structures from kerosene, hydrogenation experiments were carried out in a batch steel reactor with different amounts (20 ml and 40 ml) of crude kerosene, using silica-supported nickel and kieselguhr supported nickel-sulfur catalysts. The catalysts were analyzed with Brunauer, Emmett ve Teller (BET), Fourier transform infrared spectroscopy (FTIR), transmission electron microscope (TEM), and x-ray diffraction analysis (XRD). The aromatic fractions and paraffin structures content of the obtained samples were examined. The experiments were carried out at 200–220 °C temperature with 5 bar hydrogen initial pressure for 2 h. The obtained products were analyzed by performing a 1H NMR analysis. According to proton NMR result, the ratio of paraffinic methylene, beta methyl, epsilon methylene groups of 20 ml crude kerosene with kieselguhr supported nickel-sulfur is more than 4.5 times compared to crude kerosene, and % the percentage of aromatic hydrogen structures of it is two times lower. As a result of hydrogenation experiments with both nickel-based catalysts, aromatic hydrogen structures in crude kerosene were reduced. The total H/C ratio of rocket grade hydrocarbon fuels increased after hydrogenation experiments. For this reason, the scope of ongoing research can be extended to hybrid rocket propellants (SP-1) used in hybrid rocket engines.