Sono–degradation of Reactive Blue 19 in aqueous solution and synthetic textile industry wastewater by nanoscale zero–valent aluminum


İleri B., Doğu İ.

JOURNAL OF ENVIRONMENTAL MANAGEMENT, cilt.303, sa.114200, ss.1-12, 2022 (SCI-Expanded)

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 303 Sayı: 114200
  • Basım Tarihi: 2022
  • Doi Numarası: 10.1016/j.jenvman.2021.114200
  • Dergi Adı: JOURNAL OF ENVIRONMENTAL MANAGEMENT
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, International Bibliography of Social Sciences, PASCAL, Aerospace Database, Agricultural & Environmental Science Database, Aqualine, Aquatic Science & Fisheries Abstracts (ASFA), BIOSIS, CAB Abstracts, Communication Abstracts, EMBASE, Environment Index, Geobase, Greenfile, Index Islamicus, MEDLINE, Metadex, Pollution Abstracts, Public Affairs Index, Veterinary Science Database, Civil Engineering Abstracts
  • Sayfa Sayıları: ss.1-12
  • Çanakkale Onsekiz Mart Üniversitesi Adresli: Evet

Özet

Reactive dyes, which are commonly used in the textile industry, are toxic and carcinogenic for the ecosystem and human health. The objective of this study was to investigate the removal of Reactive Blue 19 (RB19) from aqueous solution and synthetic textile industry wastewater using nanoscale zero–valent aluminum (nZVAl), ultrasonic bath (US–40 kHz), and combined US/nZVAl through the consideration of varying experimental parameters such as pH, nZVAl dosage, contact time, and initial RB19 dye concentration. The acidic pH value was an effective parameter to degrade RB19. As the nZVAl dosage and contact time increased, the degradation of RB19 dye from aqueous solution and synthetic textile industry wastewater increased using combined US/nZVAl process. A similar result was obtained for RB19 removal with combined US/nZVAl using 0.10 g dosage at 30 min, whereas it was obtained with nZVAl alone using 0.20 g dosage at 60 min. The sono–degradation process activated the nZVAl surface depending on US cavitation effect and shock waves, and increased RB19 dye uptake capacity with a shorter contact time and lower nZVAl dosage. Increasing the initial dye concentration decreased the removal efficiency for RB19. According to the obtained reusability results, nZVAl particles could be reused for four and two consecutive cycles of combined US/nZVAl and nZVAl alone, respectively.