Diagnostic Performance of Machine Learning Models Based on F-18-FDG PET/CT Radiomic Features in the Classification of Solitary Pulmonary Nodules


Creative Commons License

SALİHOĞLU Y. S., Erdemir R. U., Puren B. A., ÖZDEMİR S., Uyulan C., ERGÜZEL T. T., ...Daha Fazla

MOLECULAR IMAGING AND RADIONUCLIDE THERAPY, cilt.31, sa.2, ss.82-88, 2022 (ESCI) identifier identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 31 Sayı: 2
  • Basım Tarihi: 2022
  • Doi Numarası: 10.4274/mirt.galenos.2021.43760
  • Dergi Adı: MOLECULAR IMAGING AND RADIONUCLIDE THERAPY
  • Derginin Tarandığı İndeksler: Emerging Sources Citation Index (ESCI), Scopus, TR DİZİN (ULAKBİM)
  • Sayfa Sayıları: ss.82-88
  • Anahtar Kelimeler: Solitary pulmonary nodule, PET/CT, radiomic, machine learning, LUNG-CANCER, TOMOGRAPHY
  • Çanakkale Onsekiz Mart Üniversitesi Adresli: Evet

Özet

Objectives: This study aimed to evaluate the ability of (18)fluorine-fluorodeoxyglucose (F-18-FDG) positron emission tomography/computed tomography (PET/CT) radiomic features combined with machine learning methods to distinguish between benign and malignant solitary pulmonary nodules (SPN).