Colloidal bioactive nanospheres prepared from natural biomolecules, catechin and L-lysine


Can M., ŞAHİNER M., ŞAHİNER N.

JOURNAL OF POLYMER RESEARCH, cilt.29, sa.3, 2022 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 29 Sayı: 3
  • Basım Tarihi: 2022
  • Doi Numarası: 10.1007/s10965-022-02941-7
  • Dergi Adı: JOURNAL OF POLYMER RESEARCH
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, Aerospace Database, Chemical Abstracts Core, Communication Abstracts, Compendex, INSPEC, Metadex, Civil Engineering Abstracts
  • Anahtar Kelimeler: Catechin, Flavonoid, Lysine, Antioxidant, Self-assembly, Blood compatible, GREEN TEA CATECHINS, DIETARY L-LYSINE, POLYMERIC NANOPARTICLES, ANTIOXIDANT ACTIVITY, ALPHA-GLUCOSIDASE, IN-VITRO, POLYPHENOLS, FLAVONOIDS, BIOAVAILABILITY, NANOMEDICINE
  • Çanakkale Onsekiz Mart Üniversitesi Adresli: Evet

Özet

Recently, major attention has been devoted to exploring and increase biomedical applications of catechins by directly employing them as constituents of nano-vehicles. Here, (+)-catechin (CAT) was integrated with another benign biomolecule, L-Lysine (LYS) using formaldehyde (FA) via single-step Mannich condensation reaction and self-assembled supramolecular CAT-LYS networks were synthesized. By using various molar feed ratios of CAT, LYS, and FA (CAT:LYS:FA), different formulations of CAT-LYS particles were obtained as CAT-LYS-1(1:1:1), CAT-LYS-2(2:1:1), CAT-LYS-3(1:2:1), and CAT-LYS-4(1:1:2) particles. The CAT-LYS-4 particles with the highest gravimetric yield of 68.9 +/- 6.0% and 783.6 +/- 56.6 nm hydrodynamic diameter was chosen for bioactivity studies. The CAT-LYS-4 particles exhibited 190.4 +/- 1.3 mu g/mL CAT-equivalent antioxidant capacity at 1000 mu g/mL concentration with TEAC value of 0.24 +/- 0.01 mu mole Trolox-equivalent/g antioxidant activity. They showed 16.81 +/- 3.47% Fe(II) chelation capacity at 350 mu g/mL and 185.8 +/- 22.8 mu mole Fe(III) reducing power at 500 mu g/mL concentration. Moreover, the CAT-LYS-4 particles retained more than half of the alpha-glucosidase inhibition activity of CAT in particulate form. Besides, a 50-fold improvement was achieved on the hemolytic blood compatibility of CAT-LYS-4 particles upon integration of LYS into CAT backbone (4.7 +/- 1.2% at 250 mu g/mL) compared to hemolysis ratio of native CAT molecules. They did not show coagulation effects up to 500 mu g/mL concentration with > 94% clotting indices. Hence, the CAT-LYS particles with enhanced blood compatibilities and well-retained inherent bioactivities of their precursors in 3D colloidal particulate structures can serve as natural biocolloids for drug/active molecule transport applications in biomedicine.