ChemistrySelect, vol.9, no.40, 2024 (SCI-Expanded)
In this study, we report that pectin-supported ruthenium nanoparticles (pectin@Ru0) can be easily prepared at room temperature by a simple and effective method and that they exhibit outstanding catalytic activity in the hydrolysis of sodium borohydride (NaBH4). The structure, oxidation state, morphology, and thermal studies were analyzed using XRD, XPS, SEM, TEM and TGA analysis. The kinetic performance of pectin@Ru0 biocatalyst was evaluated depending on ruthenium loading, NaBH4 concentration, NaOH concentration, temperature, reusability and storage. The pectin@Ru0 biocatalyst containing 2 wt.% Ru0 metal catalyzed the hydrolysis of 50 mM NaBH4+1 wt.% NaOH with 100 % yield. The activation energy (Ea) and the TOF values of the reaction was estimated as 54.7 kJ mol−1 and 53.1 mol H2 (mol Ru0 min) −1 at 30 °C and this is consistent with other previously reported catalysts, making it a remarkable result in comparison. Reusability and catalytic life studies reported that pectin@Ru0 biocatalyst is also highly active and relatively long-lived catalyst in the hydrolysis of NaBH4 in a slightly basic solution.