Production of microporous Cu-doped BTC (Cu-BTC) metal-organic framework composite materials, superior adsorbents for the removal of methylene blue (Basic Blue 9)


Eren M. S. A., Arslanoglu H., Ciftci H.

JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, cilt.8, sa.5, 2020 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 8 Sayı: 5
  • Basım Tarihi: 2020
  • Doi Numarası: 10.1016/j.jece.2020.104247
  • Dergi Adı: JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Emerging Sources Citation Index (ESCI), Scopus, CAB Abstracts, Chemical Abstracts Core, Compendex, INSPEC, Veterinary Science Database
  • Anahtar Kelimeler: Cellulosic woven waste, Metal-organic framework MOF, Methylene blue (Basic Blue 9) removal, Adsorption, Desorption, Isotherm-kinetic-thermod namic, PAPER-MILL SLUDGE, LOW-COST ADSORBENT, IN-SITU SYNTHESIS, AQUEOUS-SOLUTIONS, ACTIVATED CARBON, DYE ADSORPTION, CATIONIC DYES, COIR PITH, EQUILIBRIUM, ISOTHERM
  • Çanakkale Onsekiz Mart Üniversitesi Adresli: Hayır

Özet

Cellulosic woven waste was used as a biomass material to prepare a Cu-doped BTC (Cu-BTC) adsorbent, which was then used to remove methylene blue (Basic Blue 9) from wastewater. Cellulosic woven waste was used as a biomass material to prepare a Cu-doped BTC (Cu-BTC) adsorbent, which was then used to remove methylene blue (Basic Blue 9) from wastewater. The Cu-BTC had higher adsorption capacity for methylene blue (BB9) than pure woven waste because it had high specific surface area and electrostatic interaction with cationic methylene blue molecules. The Cu-BTC removed methylene blue from wastewater rapidly and effectively and had an excellent adsorption capacity (197.90 mg/g). In batch process, the adsorption efficiency of the adsorbent for removal of BB9 was evaluated within 20 degrees C-60 degrees C, with initial BB9 concentrations of 50 - 200 mg/L and initial pH of 2 -11. The Cu-BTC activation tailored the topological and textural properties of the obtained adsorbent, leading to a relatively large surface area of 1418.3 m(2)/g and pores with a volume of 0.491 cm(3)/g and an average size of 2.11 nm. The adsorption process fitted well with the Langmuir isotherm and the pseudo-second-order kinetic model. The possible mechanism for methylene blue removal mainly involved electrostatic attraction and micro pores. This study can serve as a guide for value-added utilization of cellulosic woven waste and as a practical method for the removal of methylene blue from wastewater. Adsorption of methylene blue onto the CuBTC is an effective and eco-friendly method for its removal from wastewater.