Renewable Energy and Carbon Intensity: Global Evidence from 184 Countries (2000–2020)


Kongkuah M., Alessa N.

ENERGIES, cilt.18, sa.13, ss.1-29, 2025 (SCI-Expanded)

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 18 Sayı: 13
  • Basım Tarihi: 2025
  • Doi Numarası: 10.3390/en18133236
  • Dergi Adı: ENERGIES
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, Aerospace Database, Agricultural & Environmental Science Database, CAB Abstracts, Communication Abstracts, Compendex, INSPEC, Metadex, Veterinary Science Database, Directory of Open Access Journals, Civil Engineering Abstracts
  • Sayfa Sayıları: ss.1-29
  • Çanakkale Onsekiz Mart Üniversitesi Adresli: Hayır

Özet

This study investigates how various renewable energy technologies influence national carbon intensity (CO2 emissions per unit of GDP) across 184 countries over the period 2000–2020. In the context of Sustainable Development Goals (SDG 7 and SDG 13) and the post-Paris-Agreement policy landscape, it addresses the gap in understanding technology-specific decarbonization effects and the role of governance. A dynamic panel framework employing the Dynamic Common Correlated Effects (DCCE) estimator accounts for cross-sectional dependence and temporal persistence, while disaggregating total renewables into hydropower, wind, solar, and geothermal generation. Environmental regulation is incorporated as a moderating variable using the World Bank’s Regulatory Quality index. Empirical results demonstrate that higher renewable generation is associated with statistically significant reductions in carbon intensity, with hydropower showing the most consistent negative effect across all income groups. Solar and geothermal technologies yield substantial carbon-reducing impacts in lower-middle-income settings once supportive policies are in place. Wind exhibits heterogeneous outcomes: positive or insignificant effects in some high- and upper-middle-income panels prior to 2015, shifting toward neutral or negative after more stringent regulation. Interaction terms reveal that stronger regulatory environments amplify renewable-driven decarbonization, particularly for intermittent sources such as wind and solar. Key contributions include (1) a comprehensive global assessment of four disaggregated renewable technologies; (2) integration of regulatory quality into decarbonization pathways, illustrating post-2015 policy moderations; and (3) methodological advancement through a large-sample DCCE approach that captures unobserved common shocks and heterogeneous country dynamics. These findings inform targeted policy measures—such as prioritizing hydropower where feasible, strengthening regulatory frameworks, and tailoring technology strategies—to accelerate low-carbon energy transitions worldwide.