Journal of Materials Science, vol.60, no.9, pp.4258-4278, 2025 (SCI-Expanded)
This research focuses on the synthesis and characterization of a novel nanocomposite, PtNPs/PEI N-GQDs, utilizing FTIR, UV–Vis, SEM, TEM, XPS, and XRD techniques. The study investigates the cytotoxic, apoptotic, and antiangiogenic effects of the nanocomposite on OVCAR-3 cells, aiming to understand the interplay between nanomaterials and cancer. Additionally, the electrochemical properties of PtNPs/PEI N-GQDs-modified glassy carbon electrodes (GCE) are explored, emphasizing analyses of HOMO–LUMO energy levels and band gap energy. Density Functional Theory (DFT) analysis results further support these findings by providing insights into the electronic structure and energetics of the nanocomposite. The nanocomposite exhibits promising electrochemical behavior, demonstrating high capacitance and sensitivity in glucose detection through cyclic voltammetry (CV) and differential pulse voltammetry (DPV) techniques. Selectivity towards glucose among interfering bioanalytes is highlighted, showcasing potential applications in tumor monitoring and diagnosis. Furthermore, the nanocomposite displays significant toxicity against cancer cells, inducing apoptosis and cell cycle arrest. Antiangiogenic effects are also observed, suggesting potential therapeutic benefits. Overall, these findings underscore the multifunctional properties of the synthesized nanocomposite, offering insights into its potential for cancer therapy and biosensor applications for glucose detection in bodily fluids.