A highly sensitive DNA aptamer-based fluorescence assay for sarcosine detection down to picomolar levels


Özyurt C., Canbay Z. Ç., Dinçkaya E., EVRAN S.

International Journal of Biological Macromolecules, vol.129, pp.91-97, 2019 (SCI-Expanded) identifier identifier

Abstract

Sarcosine is an amino acid derivative, which is considered as a key metabolite in various metabolic processes. Therefore, simple and sensitive detection methods are needed for further understanding its metabolic role and diagnostic value. In this study, we developed a novel method that meets the need for practical and sensitive detection in a complex medium mimicking urine conditions. For this aim, we selected sarcosine-specific DNA aptamers using graphene oxide-assisted systemic evolution of ligands by exponential enrichment (GO-SELEX). The candidate aptamers were labeled with 6-carboxyfluorescein (6-FAM) at their 5′ ends. Two aptamers, namely 9S and 13S produced a significant fluorescence signal upon sarcosine binding. Both aptamers enabled a sensitive analysis with a detection limit of 0.5 pM. The linear detection ranged between 5 pM and 50 μM for 9S aptamer, while 13S aptamer enabled a wider linear detection range between 5 pM and 500 μM. The aptamer-based assay allowed rapid detection with no need for chemical derivatization of sarcosine and sophisticated instruments. Moreover, the aptamer-based assay was free of interference from urea and human serum albumin.