Multiwavelength Observations of AB Doradus


SLEE O. B. , ERKAN N. , JOHNSTON-HOLLITT M., BUDDING E.

PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF AUSTRALIA, cilt.31, 2014 (SCI İndekslerine Giren Dergi) identifier identifier

  • Cilt numarası: 31
  • Basım Tarihi: 2014
  • Doi Numarası: 10.1017/pasa.2014.16
  • Dergi Adı: PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF AUSTRALIA

Özet

We have observed the bright, magnetically active multiple star AB Doradus in a multiwavelength campaign centring around two large facility allocations in November 2006 and January, 2007. Our observations have covered at least three large flares. These flares were observed to produce significant hardening of the X-ray spectra during their very initial stages. We monitored flare-related effects using the Suzaku X-ray satellite and the Australia Telescope Compact Array (ATCA) at 3.6 and 6 cm. Observations at 11 and 21 cm were also included, but they were compromised by interference. Optical monitoring was also provided by broadband B and V photometry and some high-dispersion spectrograms. From this multiwavelength coverage we find that the observed flare effects can be mainly associated with a large active region near longitude zero. The second major X-ray and microwave flare of Jan 8, 2007 was observed with a favourable geometry that allowed its initial high-energy impulsive phase to be observed in the higher frequency range of Suzaku's XIS detectors. The fractional circular polarisation (Stokes V/I) was measured in the uv data for the complete runs, for 25 min integrations and, at 4.80 GHz, for 5 min integrations, using the radio data of Nov 21 2006 and Jan 08 2007. Most of the full data sets showed V/I fractions from AB Dor B that were significant at greater than the 3 sigma level. In several of the 5 min integrations at 4.80 and 8.64 GHz this fraction reached a significance level between 3 and 9 sigma. Lack of angular resolution prevented identification of these high V/I values with one or other of the two low-mass red-dwarf components of AB Dor B.