Effect of Blunging/Dispersion Parameters on Separation of Halloysite Nanotubes from Gangue Minerals

Creative Commons License

Durgut E., Cınar M., Terzi M., Unver I. K., Yildirim Y., Boylu F., ...More

MINERALS, vol.12, no.6, pp.1-17, 2022 (SCI-Expanded)

  • Publication Type: Article / Article
  • Volume: 12 Issue: 6
  • Publication Date: 2022
  • Doi Number: 10.3390/min12060683
  • Journal Name: MINERALS
  • Journal Indexes: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, ABI/INFORM, Aerospace Database, CAB Abstracts, Communication Abstracts, INSPEC, Metadex, Directory of Open Access Journals, Civil Engineering Abstracts
  • Page Numbers: pp.1-17
  • Çanakkale Onsekiz Mart University Affiliated: Yes


Clay minerals need to be dispersed with blungers before their utilization in the related industries due to their plastic properties, and size reduction is carried out in a wet medium. Clay minerals also contain impurities such as nonplastic materials in their structure. Mechanical dispersion parameters are important in the separation of clay group minerals (halloysite and kaolinite) from their typical non-clayey gangue minerals (quartz and goethite). In this study, the removal of impurities from halloysite ore obtained from Kızıldam, Turkey, was examined in terms of mechanical dispersion parameters, namely, feed size, blunging time and speed, pulp concentration, pulp temperature, and the aging process. The effect of these parameters on halloysite dispersion was determined by particle size, chemical, and mineralogical analysis, and optical and scanning electron microscope images. The results obtained from the studies of the mechanical dispersing and particle size distribution of the products indicated that the optimum dispersion parameters were determined as −10 mm feed size, 8 h, and 1000 rpm blunging time, and speed, 35% pulp concentration at 25 °C pulp temperature. Under these optimum conditions, a 72.3% amount of −38 μm clay product containing 35.6% of halloysite, 46.5% of kaolinite, 12.0% quartz, 1.9% goethite, 0.9% gibbsite, and 3.2% other minerals were obtained from the halloysite ore, having 30.5% of halloysite, 43.4% of kaolinite, 19.1% quartz, 2.9% goethite, 1.4% gibbsite, and 2.7% other minerals. In this study, it was understood that feed size, pulp concentration, blunging time, and speed were important parameters, while pulp temperature and the aging process had no significant effect on the mechanical dispersion of Kızıldam halloysite. In addition, impurities such as quartz and iron-bearing minerals were separated from the ore by blunging and sieving.