The shellac and shellac nanocomposite coatings on enhanced the storage stability of fresh eggs for sustainable packaging


Şahansoy H., CANER C., YÜCEER M.

International Journal of Biological Macromolecules, cilt.261, 2024 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 261
  • Basım Tarihi: 2024
  • Doi Numarası: 10.1016/j.ijbiomac.2024.129817
  • Dergi Adı: International Journal of Biological Macromolecules
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, BIOSIS, Biotechnology Research Abstracts, CAB Abstracts, Chemical Abstracts Core, EMBASE, Food Science & Technology Abstracts, INSPEC, Veterinary Science Database
  • Anahtar Kelimeler: Bionanocomposite, Eggshell, stability of storage, Montmorillonite, Shellac
  • Çanakkale Onsekiz Mart Üniversitesi Adresli: Evet

Özet

Shellac bio-coatings can enhance to improve quality and storage stability of fresh egg qualities with improved shell strength therefore minimizing the reduction the egg losses. Shellac bio-chitosan at 3 concentrations (1 %, 4 % and 8 % w/w) and shellac-1 % montmorillonite nanocomposites were applied as biocoatings to improve storage stability. Shellac-8 % (SH-8 %) coated eggs exhibited the lowest weight loss (1.28 %), significantly. The weight loss of shellac 1 % + MMT and 4 % shellac (SH-4 %) coated eggs was similar each other and had lower weight loss than 1 % shellac (SH-1 %). The Haugh Unit (HU) of eggs with SH-8 % (63.75) had the significantly the highest HU. The SH-4 % (60.24) and SH-1 %/MMT-1 % (58.04) were similar, and the control was the lowest one. The albumin pH of SH-8 % (9.15) coated exhibited a significantly lower than SH-4 % (9.21) and SH-1 %/MMT-1 % (9.24), while the control (9.39) was the highest value at end of storage. For the shellac coated group, total soluble values of albumen reached 12.87 (initial) to 16.331 (SH-1 %), 15.96 (SH-4 %), 15.60 (SH-8 %) and 16.15 (SH-%1-MMT-1 %) at the end of storage. The RWC and foam stability of SH-8 %, SH-4 % and SH-1 % MMT-1 % were similar and higher than 1 % SH and uncoated egg samples. The rheology behaviors were maintained with increasing shellac concentration through the storage. SH-8 % biocoatings were very most effective in filling and sealing the porous in the eggshell and protecting the storage stability and enhancing the strength of the eggshell. Shellac bio-coatings acted as a tiny layer for an effective protective barrier to gas permeability for enhancing the storage stability of the fresh eggs. Higher shellac concentrations (4 and 8 %) and 1 %-MMT were enhanced the storage stability and can be vital solutions for improving shell strength, so it decreases breakage rates.