Electrophysiological and Morphological Characteristics and Synaptic Connectivity of Tyrosine Hydroxylase-Expressing Neurons in Adult Mouse Striatum

Creative Commons License

Ibanez-Sandoval O., Tecuapetla F., Unal B., Shah F., Koos T., Tepper J. M.

JOURNAL OF NEUROSCIENCE, vol.30, no.20, pp.6999-7016, 2010 (SCI-Expanded) identifier identifier identifier

  • Publication Type: Article / Article
  • Volume: 30 Issue: 20
  • Publication Date: 2010
  • Doi Number: 10.1523/jneurosci.5996-09.2010
  • Journal Indexes: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Page Numbers: pp.6999-7016
  • Çanakkale Onsekiz Mart University Affiliated: No


Whole-cell recordings were obtained from tyrosine hydroxylase-expressing (TH+) neurons in striatal slices from bacterial artificial chromosome transgenic mice that synthesize enhanced green fluorescent protein (EGFP) selectively in neurons expressing TH transcriptional regulatory sequences. Stereological cell counting indicated that there were similar to 2700 EGFP-TH+ neurons/striatum. Whole-cell recordings in striatal slices demonstrated that EGFP-TH+ neurons comprise four electrophysiologically distinct neuron types whose electrophysiological properties have not been reported previously in striatum. EGFP-TH+ neurons were identified in retrograde tracing studies as interneurons. Recordings from synaptically connected pairs of EGFP-TH+ interneurons and spiny neurons showed that the interneurons elicited GABAergic IPSPs/IPSCs in spiny neurons powerful enough to significantly delay evoked spiking. EGFP-TH+ interneurons responded to local or cortical stimulation with glutamatergic EPSPs. Local stimulation also elicited GABA(A) IPSPs, at least some of which arose from identified spiny neurons. Single-cell reverse transcription-PCR showed expression of VMAT1 in EGFP-TH+ interneurons, consistent with previous suggestions that these interneurons may be dopaminergic as well as GABAergic. All four classes of interneurons were medium sized with modestly branching, varicose dendrites, and dense, highly varicose axon collateral fields. These data show for the first time that there exists in the normal rodent striatum a substantial population of TH+/GABAergic interneurons comprising four electrophysiologically distinct subtypes whose electrophysiological properties differ significantly from those of previously described striatal GABAergic interneurons. These interneurons are likely to play an important role in striatal function through fast GABAergic synaptic transmission in addition to, and independent of, their potential role in compensation for dopamine loss in experimental or idiopathic Parkinson's disease.