Synthesis, photophysical, electrochemical and morphological properties of a novel cross-linked chitosan-based fluorescent polymer: A fluorescence sensor for single-stranded DNA


Yucekan I., Dinleyici M., Temurlu S., Rashid R., Bodapati J. B., Al-Khateeb B., ...More

European Polymer Journal, vol.196, 2023 (SCI-Expanded) identifier

  • Publication Type: Article / Article
  • Volume: 196
  • Publication Date: 2023
  • Doi Number: 10.1016/j.eurpolymj.2023.112306
  • Journal Name: European Polymer Journal
  • Journal Indexes: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, PASCAL, Aerospace Database, Chemical Abstracts Core, Chimica, Communication Abstracts, Compendex, INSPEC, Metadex, Civil Engineering Abstracts
  • Keywords: Chitosan, Fluorescence, Morphology, Perylene cross-linker, ssDNA
  • Çanakkale Onsekiz Mart University Affiliated: Yes

Abstract

This report details the first-time use of the perylene-3,4,9,10-tetracarboxylic dianhydride as a cross-linker to synthesize a novel fluorescent, chitosan-based cross-linked polymer (3). The polymer has single-stranded DNA (ssDNA) binding properties that can be used in sensor production for detecting salmon sperm DNA. Chitosan polymer's solubility is poor and restricted to only acidic media. In contrast, this new fluorescent chitosan polymer was soluble in various organic solvents and aqueous solutions at different pHs. Its absorption, photophysical, electrochemical and morphological properties were investigated in detail. Gel permeation chromatography determined the weight average molecular mass (Mw) of polymer 3 as 21300 g/mol. Seventeen hydrophobic perylene units were determined in the cross-linked network. The energy levels of the highest occupied molecular orbitals and lowest unoccupied molecular orbitals of the new polymer 3 were calculated as −6.24 and −3.96 eV, corresponding to the band gap of 2.28 eV. Fluorescence and ultraviolet spectroscopy techniques were used to study the interaction between ssDNA and polymer 3. The interaction pointed to the intercalative mode, and the cross-linked chitosan can be used as a stable and sensitive platform for ssDNA detection. These results show a new class of organic biopolymers that could yield promising potential in many biomedical applications.