Performance of Multilayer Coated and Cryo-treated Uncoated Tools in Machining of AISI H13 Tool Steel-Part 2: HSS End Mills

Cicek A., EKİCİ E., KIVAK T., KARA F., Ucak N.

JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, vol.30, no.5, pp.3446-3457, 2021 (SCI-Expanded) identifier identifier

  • Publication Type: Article / Article
  • Volume: 30 Issue: 5
  • Publication Date: 2021
  • Doi Number: 10.1007/s11665-021-05657-9
  • Journal Indexes: Science Citation Index Expanded (SCI-EXPANDED), Scopus, PASCAL, Aerospace Database, Applied Science & Technology Source, Aquatic Science & Fisheries Abstracts (ASFA), Chemical Abstracts Core, Communication Abstracts, Compendex, Computer & Applied Sciences, INSPEC, Metadex, Civil Engineering Abstracts
  • Page Numbers: pp.3446-3457
  • Keywords: cryogenic treatment, cutting force, HSS end mills, surface roughness, tool life
  • Çanakkale Onsekiz Mart University Affiliated: Yes


This part of the study aimed to investigate the effects of cryogenic treatment applied to uncoated high speed steel (HSS) end mills on cutting forces (Fc), surface roughness (Ra), and tool life. The milling tests were performed at four cutting speeds (40, 50, 60, and 70 m/min), three feeds (0.018, 0.024, and 0.03 mm/rev), and a depth of cut (2 mm) under dry and wet conditions. Three categories of uncoated HSS end mills were used in the tests: conventional heat treated (CHT), cryo-treated (CT), cryo-treated and tempered uncoated (CTT), and TiAlN/TiN multilayer coated (MLC) end mills. The test results showed that the lowest values of Fc and Ra were measured with the use of MLC end mills. However, the cryogenic treatment provided in a reduction in Fc and Ra values. In addition, under wet conditions, the CTT end mills exhibited better performance than the CHT ones by 71.4%. The test results showed while cryogenic treatment is a useful and cheap application in steels, it does not have the ability to compete with coating technology in terms of tool life in milling of hot work tool steel. This paper is organized into two sections. In the first section, cutting performance of cryo-treated and multilayer coated end mills is evaluated. In the second section, performance comparison of cryo-treated WC-Co (Part 1), HSS (Part 2), and MLC end mills in milling of AISI H13 hot work tool steel is presented.