Optimization of Pervaporative Desalination with Zirconia Based Metal Organic Framework Filled Nanocomposite Membrane


Ünügül T., Nigiz F. U., Karakoca B.

Journal of Polymers and the Environment, cilt.31, sa.10, ss.4288-4301, 2023 (SCI-Expanded) identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 31 Sayı: 10
  • Basım Tarihi: 2023
  • Doi Numarası: 10.1007/s10924-023-02879-x
  • Dergi Adı: Journal of Polymers and the Environment
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, PASCAL, Aerospace Database, BIOSIS, Chemical Abstracts Core, Chimica, Communication Abstracts, Compendex, Environment Index, Geobase, Greenfile, Metadex, Pollution Abstracts, Civil Engineering Abstracts
  • Sayfa Sayıları: ss.4288-4301
  • Anahtar Kelimeler: Pervaporative desalination, Polylactic acid, Response surface methodology, Zirconia-based metal organic framework
  • Çanakkale Onsekiz Mart Üniversitesi Adresli: Evet

Özet

In this study, a freestanding asymmetric polylactic acid-based MIL 140A loaded nano-composite membranes were prepared and tested for pervapoative desalination. The chemical and morphological properties of the membranes were characterized by using Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and X-ray diffraction (XRD). The effects of permeate pressure (10, 20, 30 mbar), feed temperature (40, 50, 60 °C), and NaCl concentration (2, 4, 6 wt.%) on the flux and the rejection were experimentally determined. In order to determine the effect of operation parameters on desalination, an optimization study was done using the Box–Behnken design (BBD) of Response Surface Method (RSM) and a statistical model was created. In addition to optimization, experimental studies were also carried out between the limit factors and the results were compared with the model. The highest flux was obtained as 5.40 kg/m2h accompanied with the rejection of 99.87% when at the lowest NaCl content of 2 wt.%, and the highest temperature of 60 °C. The rejection value was greater than 99.7% in all experiments. The highest flux was obtained as 5.40 and 5.44 kg/m2h, respectively, in the experimental and model study at the NaCl content of 2 wt.%, the temperature of 60 °C, and downstream pressure of 10 mbar. It was seen that the most suitable statistical model equation for the experimental results was the second-order quadratic model, and the experimental data were agreed with 99.41% of accuracy.