Synthesis, characterization and non-isothermal decomposition kinetic of a new galactochloralose based polymer


KÖK G., Ay K., Ay E., DOĞAN F., KAYA İ.

CARBOHYDRATE POLYMERS, cilt.101, ss.324-331, 2014 (SCI-Expanded) identifier identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 101
  • Basım Tarihi: 2014
  • Doi Numarası: 10.1016/j.carbpol.2013.09.065
  • Dergi Adı: CARBOHYDRATE POLYMERS
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Sayfa Sayıları: ss.324-331
  • Anahtar Kelimeler: Carbohydrate based polymer, Chloralose, Thermal analysis, Decomposition kinetic, Methacrylate
  • Çanakkale Onsekiz Mart Üniversitesi Adresli: Evet

Özet

A glycopolymer, poly(3-O-methacroyl-5,6-O-isopropylidene-1,2-O-(S)-trichloroethylidene-alpha-D-galactofuranose) (PMIPTEG) was synthesized from the sugar-carrying methacrylate monomer, 3-O-methacroyl-5,6-O-isopropylidene-1,2-O-(S)-trichloroethylidene-alpha-D-galactofuranose (MIPTEG) via conventional free radical polymerization with AIBN in 1,4-dioxane. The structures of glycomonomer and their polymers were confirmed by UV-vis, FT-IR, H-1 NMR, C-13 NMR, GPC, TG/DTG-DTA, DSC, and SEM techniques. SEM images showed that PMIPTEG had a straight-chain length structure. On the other hand, the thermal decomposition kinetics of polymer were investigated by means of thermogravimetric analysis in dynamic nitrogen atmosphere at different heating rates. The apparent activation energies for thermal decomposition of the PMIPTEG were calculated using the Kissinger, Kim-Park, Tang, Flynn-Wall-Ozawa (FWO), Kissinger-Akahira-Sunose (KAS) and Friedman methods and were found to be 100.15, 104.40, 102.0, 102.2, 103.2 and 99.6 kJ/mol, respectively. The most likely process mechanism related to the thermal decomposition stage of PMIPTEG was determined to be a D deceleration type in terms of master plots results. (C) 2013 Elsevier Ltd. All rights reserved.