Ultrasensitive detection of NSE employing a novel electrochemical immunosensor based on a conjugated copolymer


Aydın M., Aydın E. B., SEZGİNTÜRK M. K.

Analyst, cilt.149, sa.5, ss.1632-1644, 2024 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 149 Sayı: 5
  • Basım Tarihi: 2024
  • Doi Numarası: 10.1039/d3an01602a
  • Dergi Adı: Analyst
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, Aerospace Database, Aqualine, Aquatic Science & Fisheries Abstracts (ASFA), CAB Abstracts, Chemical Abstracts Core, Chimica, Communication Abstracts, Compendex, EMBASE, Food Science & Technology Abstracts, Metadex, Pollution Abstracts, Veterinary Science Database, Civil Engineering Abstracts
  • Sayfa Sayıları: ss.1632-1644
  • Çanakkale Onsekiz Mart Üniversitesi Adresli: Evet

Özet

In the current study a simple and highly specific label-free impedimetric neuron specific enolase (NSE) immunosensor based on a copolymer matrix-coated disposable electrode was designed and tested. The copolymer matrix was prepared using a very conductive EDOT monomer and semi-conductive thiophene-bearing epoxy groups (ThEp), and the combination of the two monomers enhanced the conductivity and protein loading capacity of the electrode surface. The P(ThEp-co-EDOT) copolymer matrix was prepared via a drop-casting process and anti-NSE recognition biomolecules were immobilized directly on the epoxy groups of the copolymer. After the coupling of NSE molecules on the P(ThEp-co-EDOT) copolymer matrix-coated electrode surface, the charge transfer resistance (Rct) of the biosensor changed dramatically. These changes in Rct were proportional to the NSE molecule amounts captured by anti-NSE molecules. Under optimized experimental conditions, the increment in the Rct value was proportional to the NSE concentration over a range of 0.01 to 25 pg mL−1 with a detection limit (LOD) of 2.98 × 10−3 pg mL−1. This copolymer-coated electrode provided a lower LOD than the other biosensors. In addition, the suggested electrochemical immuno-platform showed good selectivity, superior reproducibility, long-term stability, and high recovery of NSE in real serum (95.64-102.20%) and saliva (95.28-105.35%) samples. These results showed that the present system had great potential for electrochemical biosensing applications.