Diagnostic Performance of Machine Learning Models Based on F-18-FDG PET/CT Radiomic Features in the Classification of Solitary Pulmonary Nodules


Creative Commons License

SALİHOĞLU Y. S., Erdemir R. U., Puren B. A., ÖZDEMİR S., Uyulan C., ERGÜZEL T. T., ...More

MOLECULAR IMAGING AND RADIONUCLIDE THERAPY, vol.31, no.2, pp.82-88, 2022 (ESCI) identifier identifier identifier

  • Publication Type: Article / Article
  • Volume: 31 Issue: 2
  • Publication Date: 2022
  • Doi Number: 10.4274/mirt.galenos.2021.43760
  • Journal Name: MOLECULAR IMAGING AND RADIONUCLIDE THERAPY
  • Journal Indexes: Emerging Sources Citation Index (ESCI), Scopus, TR DİZİN (ULAKBİM)
  • Page Numbers: pp.82-88
  • Keywords: Solitary pulmonary nodule, PET/CT, radiomic, machine learning, LUNG-CANCER, TOMOGRAPHY
  • Çanakkale Onsekiz Mart University Affiliated: Yes

Abstract

Objectives: This study aimed to evaluate the ability of (18)fluorine-fluorodeoxyglucose (F-18-FDG) positron emission tomography/computed tomography (PET/CT) radiomic features combined with machine learning methods to distinguish between benign and malignant solitary pulmonary nodules (SPN).