Impacts of crop rotational diversity and grazing under integrated crop-livestock system on soil surface greenhouse gas fluxes


Abagandura G. O., Senturklu S., Singh N., Kumar S., Landblom D. G., Ringwall K.

PLOS ONE, cilt.14, sa.5, 2019 (SCI-Expanded) identifier identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 14 Sayı: 5
  • Basım Tarihi: 2019
  • Doi Numarası: 10.1371/journal.pone.0217069
  • Dergi Adı: PLOS ONE
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Çanakkale Onsekiz Mart Üniversitesi Adresli: Hayır

Özet

Integrated crop-livestock (ICL) system is beneficial in enhancing soil organic carbon and nutrient cycling. However, the benefits of the ICL system on mitigation of GHG emissions are poorly understood. Thus, the present study was initiated in 2011 to assess the effect of crop rotation diversity and grazing managed under the ICL system on GHG emissions. The cropping system investigated here included spring wheat grown continuously for five years and a 5-yr crop rotation (spring wheat-cover crops-corn-pea/barley-sunflower). Each phase was present each year. Yearling steers grazed only the pea/barley, corn and cover crops plots in 2016 and 2017. Exclusion areas avoided the grazing in these crops to compare the GHG fluxes under grazed vs. non-grazed areas. The GHG fluxes were measured weekly from all crop phases during the growing season for both years using a static chamber. Cumulative CO2 and CH4 fluxes were similar from all crop phases over the study period. However, continuous spring wheat recorded higher cumulative N2O fluxes (671 g N ha(-1)) than that under spring wheat in rotation (571 g N ha(-1)). Grazing decreased cumulative CO2 fluxes (359 kg C ha(-1)) compared to ungrazed (409 kg C ha(-1)), however, no effect from grazing on cumulative CH4 and N2O fluxes over the study period were found. The present study shows that grazing and crop rotational diversity affected carbon and nitrogen inputs, which in turn affected soil CO2 and N2O fluxes. Long-term monitoring is needed to evaluate the response of soil GHG emissions to grazing and crop rotation interactions under the ICL system.