Synthesis, characterization and antimicrobial activity of Fe(II), Zn(II), Cd(II) and Hg(II) complexes with 2,6-bis(benzimidazol-2-yl) pyridine ligand


Aghatabay N. M., Neshat A., Karabiyik T., Somer M., Haciu D., Dulger B.

EUROPEAN JOURNAL OF MEDICINAL CHEMISTRY, cilt.42, sa.2, ss.205-213, 2007 (SCI-Expanded) identifier identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 42 Sayı: 2
  • Basım Tarihi: 2007
  • Doi Numarası: 10.1016/j.ejmech.2006.09.023
  • Dergi Adı: EUROPEAN JOURNAL OF MEDICINAL CHEMISTRY
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Sayfa Sayıları: ss.205-213
  • Çanakkale Onsekiz Mart Üniversitesi Adresli: Hayır

Özet

2,6-Bis(benzimidazol-2-yl)pyridine (L) ligand and complexes [M(L)Cl-2] and [Fe(L)(2)](ClO4)(2) (M = Zn, Cd, Hg) have been synthesized. The,geometries of the [M(L)Cl-2] complexes were derived from theoretical calculation in DGauss/DFT level (DZVP basis set) on CACHE. The central M(II) ion is penta-coordinated and surrounded by N3Cl2 environment, adopting a distorted trigonal bipyramidal geometry. The ligand is tridentate, via three nitrogen atoms to metal centre and two chloride ions lie on each side of the distorted benzimidazole ring. In the [Fe(L)21 (ClO4)(2) complex, the central Fe(H) ion is surrounded by two (3N) units, adopting a octahedral geometry. The elemental analysis, molecular conductivity, FT-Raman, FT-IR (mid-, far-IR), H-1, and C-13 NMR were reported. The antimicrobial activities of the free ligand, its hydrochloride salt, and the complexes were evaluated using the disk diffusion method in dimethyl sulfoxide (DMSO) as well as the minimal inhibitory concentration (MIC) dilution method, against 10 bacteria and the results compared with that for gentamycin. Antifungal activities were reported for Candida albicans, Khtyveromyces fragilis, Rhodotorula rubra, Debaryomyces hansenii, Hanseniaspora guilliemondii, and the results were referenced against nystatin, ketaconazole, and clotrimazole antifungal agents. In most cases, the compounds tested showed broad-spectrum (Gram positive and Gram negative bacteria) activities that were either more effective than or as potent as the references. The binding of two most biologically effective compounds of zinc and mercury to calf thymus DNA has also been investigated by absorption spectra. (c) 2006 Elsevier Masson SAS. All rights reserved.