Impact of Postharvest Putrescine Treatments on Phenolic Compounds, Antioxidant Capacity, Organic Acid Contents and Some Quality Characteristics of Fresh Fig Fruits during Cold Storage

Creative Commons License

Kucuker E., Ağlar E., SAKALDAŞ M., Şen F., Gundogdu M.

Plants, vol.12, no.6, 2023 (SCI-Expanded) identifier identifier

  • Publication Type: Article / Article
  • Volume: 12 Issue: 6
  • Publication Date: 2023
  • Doi Number: 10.3390/plants12061291
  • Journal Name: Plants
  • Journal Indexes: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Agricultural & Environmental Science Database, BIOSIS, CAB Abstracts, Food Science & Technology Abstracts, Veterinary Science Database, Directory of Open Access Journals
  • Keywords: bioactive compounds, fig, organic acids, putrescine, storage
  • Çanakkale Onsekiz Mart University Affiliated: Yes


The storage and shelf life of the fig, which has a sensitive fruit structure, is short, and this results in excessive economic losses. In a study carried out to contribute to the solution of this problem, the effect of postharvest putrescine application at different doses (0, 0.5, 1.0, 2.0, and 4.0 mM) on fruit quality characteristics and biochemical content during cold storage in figs was determined. At the end of the cold storage, the decay rate and weight loss in the fruit were in the ranges of 1.0–1.6% and 1.0–5.0 %, respectively. The decay rate and weight loss were lower in putrescine-applied fruit during cold storage. Putrescine application had a positive effect on the changes in fruit flesh firmness values. The SSC rate of fruit varied between 14 and 20%, while significant differences in the SSC rate occurred depending on storage time and putrescine application dose. With putrescine application, the decrease in the acidity rate of the fig fruit during cold storage was smaller. At the end of the cold storage, the acidity rate was between 1.5–2.5% and 1.0–5.0. Putrescine treatments affected total antioxidant activity values and changes occurred in total antioxidant activity depending on the application dose. In the study, it was observed that the amount of phenolic acid in fig fruit decreased during storage and putrescine doses prevented this decrease. Putrescine treatment affected the changes in the quantity of organic acids during cold storage, and this effect varied depending on the type of organic acid and the length of the cold storage period. As a result, it was revealed that putrescine treatments can be used as an effective method to maintain postharvest fruit quality in figs.