Mapping of QTL controlling tocopherol content in winter oilseed rape

Marwede V., Gul M., Becker H., Ecke W.

PLANT BREEDING, cilt.124, sa.1, ss.20-26, 2005 (SCI İndekslerine Giren Dergi) identifier identifier


Tocopherols are natural antioxidants in vegetable oils and are important dietary nutrients. Enhanced tocopherol content has become an important objective in oilseed rape breeding. A segregating DH population was tested for 2 years at two locations in replicated field trials. Genotypic differences occurred for alpha-, gamma- and total tocopherol content as well as alpha/gamma-tocopherol ratio, but highly significant genotype x environment interactions resulted in low heritabilities. Using a mixed-model composite interval mapping approach between one and five QTL with additive and/or additive x environment interaction effects could be mapped for alpha-, gamma- and total tocopherol content and alpha/gamma-tocopherol ratio. In addition, one to six locus pairs with epistatic interaction effects were identified, indicating a strong contribution of epistasis to trait variation. In total, the additive and epistatic effects explained between 28% (alpha-tocopherol content) and 73% (total tocopherol content) of the genotypic variance in the population, with individual QTL and locus pairs contributing between 7.5 and 29.2% of variance. Considering the low heritabilities of the tocopherol traits, the results of this study indicate that marker-assisted selection may be an efficient strategy in a breeding program for enhanced tocopherol content in rapeseed.