MOLECULAR NEUROBIOLOGY, cilt.60, sa.7, ss.3695-3706, 2023 (SCI-Expanded)
Subarachnoid hemorrhage (SAH) accounts for 5% of all stroke cases and is responsible for significant permanent brain and neurological damage within the first few days. Loss of smell is one of those neurological disorders following olfactory bulb injury after SAH. Olfaction plays a critical role in several aspects of life. The primary underlying mechanism of olfactory bulb (OB) injury and loss of smell after SAH remains unknown. Piceatannol (PIC), a natural stilbene, possesses anti-inflammatory and anti-apoptotic effects against various diseases. In this study, we aimed to investigate the potential therapeutic effects of PIC on OB injury following SAH at molecular mechanism based on SIRT1, inflammatory (TNF-α, IL1-β, NF-κB, IL–6, TLR4), and apoptosis (p53, Bax, Bcl-2, caspase-3)-related gene expression markers and histopathology level; 27 male Wistar Albino rats were used in a pre-chiasmatic subarachnoid hemorrhage model. Animals were divided into groups (n = 9): SHAM, SAH, and PIC. Garcia’s neurological examination, brain water content, RT-PCR, histopathology, and TUNEL analyses were performed in all experimental groups with OB samples. Our results indicated that PIC administration significantly suppressed inflammatory molecules (TNF-α, IL–6, IL1-β, TLR4, NF-κB, SIRT1) and apoptotic molecules (caspase-3, p53, Bax). We also evaluated edema levels and cell damage in OB injury after SAH. Ameliorative effects of PIC are also observed at the histopathology level. Garcia’s neurological score test performed a neurological assessment. This study is the first to demonstrate the neuroprotective effects of PIC on OB injury after SAH. It suggests that PIC would be a potential therapeutic agent for alleviating OB injury after SAH.