Neuroprotective Effects of Piceatannol on Olfactory Bulb Injury after Subarachnoid Hemorrhage


Creative Commons License

Akar A., ÖZTOPUZ R. Ö., Büyük B., Ovali M., Aykora D., Malçok Ü.

MOLECULAR NEUROBIOLOGY, cilt.60, sa.7, ss.3695-3706, 2023 (SCI-Expanded) identifier identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 60 Sayı: 7
  • Basım Tarihi: 2023
  • Doi Numarası: 10.1007/s12035-023-03306-x
  • Dergi Adı: MOLECULAR NEUROBIOLOGY
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Aquatic Science & Fisheries Abstracts (ASFA), BIOSIS, Chemical Abstracts Core, MEDLINE
  • Sayfa Sayıları: ss.3695-3706
  • Anahtar Kelimeler: Subarachnoid hemorrhage, Anosmia, Piceatannol, Olfactory bulb, Neuro-inflammation
  • Çanakkale Onsekiz Mart Üniversitesi Adresli: Evet

Özet

Subarachnoid hemorrhage (SAH) accounts for 5% of all stroke cases and is responsible for significant permanent brain and neurological damage within the first few days. Loss of smell is one of those neurological disorders following olfactory bulb injury after SAH. Olfaction plays a critical role in several aspects of life. The primary underlying mechanism of olfactory bulb (OB) injury and loss of smell after SAH remains unknown. Piceatannol (PIC), a natural stilbene, possesses anti-inflammatory and anti-apoptotic effects against various diseases. In this study, we aimed to investigate the potential therapeutic effects of PIC on OB injury following SAH at molecular mechanism based on SIRT1, inflammatory (TNF-α, IL1-β, NF-κB, IL–6, TLR4), and apoptosis (p53, Bax, Bcl-2, caspase-3)-related gene expression markers and histopathology level; 27 male Wistar Albino rats were used in a pre-chiasmatic subarachnoid hemorrhage model. Animals were divided into groups (n = 9): SHAM, SAH, and PIC. Garcia’s neurological examination, brain water content, RT-PCR, histopathology, and TUNEL analyses were performed in all experimental groups with OB samples. Our results indicated that PIC administration significantly suppressed inflammatory molecules (TNF-α, IL–6, IL1-β, TLR4, NF-κB, SIRT1) and apoptotic molecules (caspase-3, p53, Bax). We also evaluated edema levels and cell damage in OB injury after SAH. Ameliorative effects of PIC are also observed at the histopathology level. Garcia’s neurological score test performed a neurological assessment. This study is the first to demonstrate the neuroprotective effects of PIC on OB injury after SAH. It suggests that PIC would be a potential therapeutic agent for alleviating OB injury after SAH.