An alternative approach to tracing the volumic proliferation development of an entire tumor spheroid in 3D through a mini-Opto tomography platform

POLAT A., Gokturk D.

MICRON, vol.152, 2022 (SCI-Expanded) identifier identifier identifier

  • Publication Type: Article / Article
  • Volume: 152
  • Publication Date: 2022
  • Doi Number: 10.1016/j.micron.2021.103173
  • Journal Name: MICRON
  • Journal Indexes: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, Aqualine, BIOSIS, Biotechnology Research Abstracts, CAB Abstracts, EMBASE, INSPEC, MEDLINE, Veterinary Science Database
  • Keywords: Tumoroid, 3D cell culture, Mini-Opto tomography, 3D image reconstruction, Algebraic reconstruction technique, Iterative reconstruction, 3D bioimaging, CELL-CULTURE SYSTEMS
  • Çanakkale Onsekiz Mart University Affiliated: Yes


Microscopy, which is listed among the major in-situ imaging applications, allows to derive information from a biological sample on the existing architectural structures of cells and tissues and their changes over time. Large biological samples such as tumor spheroids cannot be imaged within one field of view, regional imaging in different areas and subsequent stitching are required to attain the full picture. Microscopy is not typically used to produce full-size visualization of tumor spheroids measuring a few millimeters in size. In this study, we propose a 3D volume imaging technique for tracing the growth of an entire tumor spheroid measuring up to 10 mm using a miniaturized optical (mini-Opto) tomography platform. We performed a primary analysis of the 3D imaging for the MIA PaCa-2 pancreatic tumoroid employing its 2D images produced with the mini-Opto tomography from different angles ranging from -25 degrees to +25 degrees at six different three-day-apart time points of consecutive image acquisition. These 2D images were reconstructed by using a 3D image reconstruction algorithm that we developed based on the algebraic reconstruction technique (ART). We were able to reconstruct the 3D images of the tumomid to achieve 800 x 800-pixel 50-layer images at resolutions of 5-25 mu m. We also created its 3D visuals to understand more clearly how its volume changed and how it looked over weeks. The volume of the tumor was calculated to be 6.761 mm(3) at the first imaging time point and 46.899 mm(3) 15 days after the first (at the sixth time point), which is 6.94 times larger in volume. The mini-Opto tomography can be considered more advantageous than commercial microscopy because it is portable, more cost-effective, and easier to use, and enables full-size visualization of biological samples measuring a few millimeters in size.