Valorization of biomass-derived magnetic activated carbon from vinasse and grape marc for sustainable bitumen modification


Özdemir A. M., Yılmaz B., ARSLANOĞLU H.

Biomass and Bioenergy, cilt.203, 2025 (SCI-Expanded) identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 203
  • Basım Tarihi: 2025
  • Doi Numarası: 10.1016/j.biombioe.2025.108307
  • Dergi Adı: Biomass and Bioenergy
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, PASCAL, BIOSIS, Biotechnology Research Abstracts, CAB Abstracts, Compendex, Environment Index, Geobase, INSPEC, Pollution Abstracts, Veterinary Science Database, DIALNET, Civil Engineering Abstracts
  • Anahtar Kelimeler: Carreau-Yasuda, Cross, Magnetic activated carbon, Modified bitumen, Rheology, Shear rate
  • Çanakkale Onsekiz Mart Üniversitesi Adresli: Evet

Özet

Agricultural and food-processing residues represent abundant biomass resources with untapped potential for sustainable material production in the bioenergy sector. Functional renewable materials are obtained by using such residues in high-value applications such as bitumen modification. This study investigates the use of magnetic activated carbon (MAC), synthesized from by-products from bioethanol production (vinasse and grape marc) as a sustainable additive for modifying 160/220 penetration-grade bitumen. The objective is to enhance the rheological performance of bitumen under varying thermal and loading conditions. Modified binders containing 5 %, 10 %, and 15 % MAC were evaluated using dynamic mechanical analysis. Master curves for complex modulus and viscosity were developed using the Christensen-Anderson, Cross, and Carreau-Yasuda models. The results show that MAC incorporation improves elasticity, increases zero-shear viscosity, and enhances resistance to permanent deformation. In particular, it was observed that the addition of 15 % MAC increased the ZSV and G∗/sinδ (64 °C) values by approximately 35 % and 95 % compared to pure binder, respectively. Rheological index (R) values increased by 38 %. The findings suggest that MAC-modified binders offer a promising solution for improving the performance of bituminous pavements in hot climates. Beyond advancing pavement performance, this work demonstrates a high-value utilization pathway for biomass residues, linking waste valorization to renewable material development within the bioenergy framework.