Nutrient concentration and yield of maize (Zea mays L.) after vetch (Vicia sativa L.) in conventional and reduced tillage systems


ÖZPINAR S.

JOURNAL OF PLANT NUTRITION, cilt.39, sa.12, ss.1697-1712, 2016 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 39 Sayı: 12
  • Basım Tarihi: 2016
  • Doi Numarası: 10.1080/01904167.2016.1161791
  • Dergi Adı: JOURNAL OF PLANT NUTRITION
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Sayfa Sayıları: ss.1697-1712
  • Çanakkale Onsekiz Mart Üniversitesi Adresli: Evet

Özet

The effects of tillage on plant availability nutrients are critical to develop nutrient management strategies to optimize yield. The objective of this study was to evaluate differences in the concentration of 19-nutrient and yield after 4-year of conventional [moldboard plough (MT)] and two reduced [rototiller (ST) and chisel (CT)] tillage systems in maize (Zea mays L.) after winter vetch (Vicia sativa L.) in double crop one year. Three tillage systems were compared from 2005 to 2008 in area located in the western region of Turkey under semi-arid Mediterranean clay-loam soils. Nutrients were determined in maize leaves, stems, roots and soils. Results show that the concentration of macronutrients were found to be higher in leaves and stems of maize than roots in three tillage systems of all years, while the opposite was true for micronutrients. Among the macro and micro-nutrients, there was no effect of tillage on nutrient concentration in all maize tissues for sulfur, magnesium, sodium and copper (S, Mg, Na and Cu). However, the nitrogen, potassium, calcium, boron, zinc, manganese, iron, aluminum, barium, cadmium, cobalt, chromium, nickel, lead and selenium (N, K, Ca, B, Zn, Mn, Fe, Al, Ba, Cd, Co, Cr, Ni, Pb and Se) were affected by tillage. ST increased N in stems of 2006 compared with other systems. K in roots of 2006 was 52 and 30% greater in CT than in ST and MT, respectively, while ST and MT of 2007 resulted in 38 and 41% greater than CT. In two of four years, ST contributed to higher grain yield compared with other systems. In general, ST can effectively contribute to increase maize yield following winter vetch compared with MT under this region. Results suggested the need for different management systems associated with reduced tillage including rotation, particularly for basic nutrients. Further, results showed similarities and differences with other studies under tillage with maize following winter vetch.