Applied Sciences (Switzerland), cilt.15, sa.5, 2025 (SCI-Expanded)
Devastating earthquakes around the world highlight the crucial need to understand the seismic performance of structures. Local soil conditions are among the most significant factors influencing a structure’s seismic behavior. Earthquake–soil–structure interactions directly affect seismic damage levels. In performance-based earthquake engineering, accurate target displacements enable a more realistic estimation of the expected performance levels for structures. This depends on obtaining realistic local soil conditions. This study conducted structural analyses on seven different variables, considering four different local soil conditions specified in Eurocode 8. The variables selected were importance class, peak ground acceleration (PGA), damping ratio, ground storey height, frame openings, number of storeys, and storey height, applied to a symmetrical and regular reinforced concrete structure. Period, base shear, stiffness, and target displacements were obtained for each variable through pushover analyses for the four various local soil conditions. All structural results were compared with one another and with other variables. This paper also aimed to reveal the effect of local soil conditions in the context of the 6 February 2023 Kahramanmaraş (Türkiye) earthquakes. The study confirms that variations in soil types, as classified in Eurocode 8, have a major impact on the seismic behavior of reinforced-concrete structures. Weaker soils amplify seismic effects, increasing target displacements and structural vulnerability.