A Novel High-Contrast Ratio Electrochromic Material from Spiro[cyclododecane-1,9 '-fluorene]bicarbazole


Usluer O., KOYUNCU S. , Demic S., Janssen R. A. J.

JOURNAL OF POLYMER SCIENCE PART B-POLYMER PHYSICS, cilt.49, ss.333-341, 2011 (SCI İndekslerine Giren Dergi) identifier identifier

  • Cilt numarası: 49 Konu: 5
  • Basım Tarihi: 2011
  • Doi Numarası: 10.1002/polb.22190
  • Dergi Adı: JOURNAL OF POLYMER SCIENCE PART B-POLYMER PHYSICS
  • Sayfa Sayıları: ss.333-341

Özet

A novel electroactive spirocyclododecylfluorene monomer named 2,7-bis(carbazol-9-yl)-9,9'-spiro[cyclododecane- 1,9'-fluorene] (SFC) was synthesized and electrochemically polymerized to give a very stable multi-electrochromic polymer (poly-SFC). Two separate oxidation processes were observed for both SFC monomer and poly-SFC that carries two carbazole units. The polymeric film of poly-SFC was coated onto ITO/glass surface, and it shows different colors (transparent, yellowish green, green, and dark green) upon stepwise oxidations. An electrochromic device based on poly-SFC was assembled in the sandwich cell configuration of ITO/poly-SFC// gel electrolyte//PEDOT/ITO. Poly-SFC exhibits 90% of transparency at neutral state and a high contrast ratio (Delta T = 58% at 800 nm). This device constructed from it represents a response time of about 1 s, high coloration efficiency (1377 cm(2) C-1) and retained its performance by 96.4% even after 1000 cycles. Exhibiting high transparency at neutral state, reversible redox behavior, resistance to overoxidation, and especially high contrast ratio at near IR region can make poly-SFC be useful and promising candidate for electrochromic applications despite having a relatively slow response time. (C) 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 49: 333-341, 2011