A novel and mass-sensitive quartz tuning fork platform for glial fibrillary acidic protein determination


ÖZCAN B., ULUDAĞ İ., ÜNAL M. A., ARI F., SEZGİNTÜRK M. K., ÖZKAN S. A.

Microchemical Journal, cilt.212, 2025 (SCI-Expanded) identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 212
  • Basım Tarihi: 2025
  • Doi Numarası: 10.1016/j.microc.2025.113408
  • Dergi Adı: Microchemical Journal
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, BIOSIS, CAB Abstracts, Chemical Abstracts Core, Chimica, Food Science & Technology Abstracts, Index Islamicus, Veterinary Science Database
  • Anahtar Kelimeler: GFAP, Immunosensor, Mass-based biosensing, Qtf, Quartz tuning fork
  • Çanakkale Onsekiz Mart Üniversitesi Adresli: Evet

Özet

Traumatic brain injury (TBI) is a major cause of mortality and disability worldwide, and its diagnosis is still difficult. A unique blood biomarker for numerous neurological disorders, including traumatic brain injury, is glial fibrillary acidic protein (GFAP). Portable, quick, and functional equipments are crucial in fighting against neurological illnesses. Quartz Tuning Fork (QTF) biosensors are attracting great attention due to their seamless integration with miniaturized and portable devices. This study introduces a new, adaptable, affordable frequency analyzer for GFAP detection. A simple and stable process to design a QTF system which has gold surface modified with 3-mercaptopropionic acid (3-MPA) and its biocompatibility with GFAP antigen was investigated. The surface morphology of the QTF system was analyzed during its immobilization procedure using Atomic Force Microscopy (AFM). The constructed QTF sensor system demonstrated high repeatability (the standard deviation: ±0.12183 Hz), good reproducibility, linearity, ability to detect antigen concentrations at femtogram levels. It proved that the QTF sensor system decorated with 3-MPA could be a good choice for the sensitive determination of GFAP, according to the statistical data. The modified QTF sensor demonstrated remarkably straightforward and mass-sensitive GFAP detection. The developed QTF-based biosensor achieved an outstanding linear detection range of 1–100 fg mL−1. The responses of the designed QTF-based sensor to commercial human serum also show that it is a successful and promising system for clinical use.