The Relationship between Basal Serum Lipoprotein(a) Levels and the Pulmonary Artery to Ascending Aorta Ratio in COVID-19 Survivors

Küçük U., Kırılmaz B.

International Journal of Cardiovascular Sciences, vol.36, pp.1-8, 2023 (Scopus)


Background: Coronavirus disease (COVID-19) can cause permanent damage to vascular structures by directly or indirectly affecting the cardiopulmonary system. Lipoprotein(a) [Lp(a)] is an important identified risk factor for vascular endothelial cell dysfunction.

Objective: The aim of this study was to reveal the relationship between Lp(a) levels measured at the time of COVID-19 diagnosis and the pulmonary artery (PA) to the ascending aorta (Ao) ratio (PA:Ao ratio) in survivors evaluated by transthoracic echocardiography (TTE).

Methods: The study sample consisted of 100 patients who recovered from COVID-19 in the past 3 to 6 months. The relationship between the change in the PA:Ao ratio (ΔPA:Ao) and the Lp(a) levels measured at the time of diagnosis was evaluated. Diameter measurements at baseline and follow-up were evaluated with TTE.

Results: A significant increase was found in PA, Ao, and epicardial adipose tissue (EAT) thickness in TTE (p< 0.001 for all). There was a weak correlation between D-dimer and high-sensitivity cardiac troponin measured at the time of diagnosis and ΔPA:Ao and ΔEAT in survivors. However, a positive and strong correlation was observed between Lp(a) levels and ΔPa:Ao (r = 0.628, p< 0.001) and ΔEAT (r = 0.633, p< 0.001).

Conclusion: There may be dysfunction in vascular structures due to COVID-19. For the first time in the literature, a strong correlation was shown between the Lp(a) levels measured at the time of diagnosis and ΔPA:Ao and ΔEAT values in patients with COVID-19.