The impact of acute cold water stress on blood parameters, mortality rate and stress-related genes in Oreochromis niloticus, Oreochromis mossambicus and their hybrids

YILMAZ S., ERGÜN S., ÇELİK E. Ş., Banni M., Ahmadifar E., Dawood M. A.

Journal of Thermal Biology, vol.100, 2021 (SCI-Expanded) identifier

  • Publication Type: Article / Article
  • Volume: 100
  • Publication Date: 2021
  • Doi Number: 10.1016/j.jtherbio.2021.103049
  • Journal Name: Journal of Thermal Biology
  • Journal Indexes: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, Animal Behavior Abstracts, Aquatic Science & Fisheries Abstracts (ASFA), BIOSIS, CAB Abstracts, EMBASE, MEDLINE, Veterinary Science Database
  • Keywords: Cold water stress, Gene expression, Hybrid, Physiologicalresponses, Tilapia
  • Çanakkale Onsekiz Mart University Affiliated: Yes


© 2021 Elsevier LtdThis study aims to evaluated the response of Oreochromissp. to cold stress. Two experiments were conducted involving a total of 1080 juvenile Oreochromis niloticus, O. mossambicus, O. niloticus♂ × O.mossambicus♀=F1♂ × O.mossambicus ♀ (Hybrid 1; H1) and O. mossambicus♂ × O. niloticus♀ (Hybrid 2; H2). In the 1st experiment, fish were exposed to cold water (12 °C) for 24 h and then hematological parameters, serum biochemical variables, innate immune responses, antioxidant status, and liver gene expression responses (hsp70, hsp27, hsp90, hsp40, cat, sod, eef1a1 and calreticulin) were analyzed. Hematological and serum biochemical responses involved species-specific differences. At optimal temperatures (28 °C), respiratory burts activity (RBA) and myeloperoxidase (MPO) values of H1, H2 and O. mossambicus were significantly higher than O. niloticus (p< 0.05). While the RBAvalue of O. mossambicus decreased after exposure to cold water (p< 0.05), lysozyme activities of O. niloticus and H2 and MPO activities of all experimental fish increased significantly (p< 0.05). At control conditions (28 °C), cortisol levels were found to be higher in O. mossambicus than in H1 and O. niloticus (p< 0.05). A significant increase in cat and sod transcripts was observed in liver of fish being very pronounced in O. mossambicus and H2. The highest up-regulation was observed for hsp70 target where the lowest but significant up-regulation was observed for hsp90 gene. In 2nd experiment, water temperature was gradually decrease from 28 °C to 12 °C (average, 1 °C/1 h).Survival rates of H1 and H2 were found to be different compared to O. mossambicus and O. niloticus (p< 0.05) after 20 days of cold water challenge.O. mossambicus was the most cold-sensitive group, followed by the H2, H1 and O. niloticus. Our data should be carfully considered in view of the possible physiological and anti-stressor responses being species-specific in fish.