Molecular Insights into the Synergistic Anticancer and Oxidative Stress–Modulating Activity of Quercetin and Gemcitabine


Afşin Y., Alkan Akalın S., Özdemir İ., Tuncer M. C., ÖZTÜRK Ş.

Antioxidants, cilt.15, sa.1, 2026 (SCI-Expanded, Scopus) identifier identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 15 Sayı: 1
  • Basım Tarihi: 2026
  • Doi Numarası: 10.3390/antiox15010091
  • Dergi Adı: Antioxidants
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, BIOSIS, Chemical Abstracts Core, Directory of Open Access Journals
  • Anahtar Kelimeler: angiogenesis, apoptosis, breast cancer, gemcitabine, HIF-1α, hypoxia, quercetin, VEGF
  • Çanakkale Onsekiz Mart Üniversitesi Adresli: Evet

Özet

Quercetin (Q), a bioactive flavonoid, exerts potent antioxidant and redox-modulating effects by activating the nuclear factor erythroid 2-related factor 2/antioxidant response Element (Nrf2/ARE) pathway and upregulating endogenous antioxidant defenses, including enzymatic antioxidants such as superoxide dismutase (SOD) and catalase (CAT), as well as non-enzymatic glutathione (GSH) and lipid peroxidation (MDA). Gemcitabine (Gem), a widely used antimetabolite chemotherapeutic, often shows limited efficacy under hypoxic and oxidative stress conditions driven by hypoxia-inducible factor 1-alpha (HIF-1α) and vascular endothelial growth factor (VEGF)-mediated angiogenesis. This study investigated the redox-mediated synergistic effects of Q and Gem in MDA-MB-231 human breast cancer cells. Combination treatment significantly reduced cell viability beyond the expected Bliss value, indicating a synergistic interaction and enhanced apoptosis compared with single-agent treatments. Increased reactive oxygen species (ROS) production was accompanied by depletion of GSH and accumulation of MDA, establishing a pro-apoptotic oxidative stress environment. Q alone enhanced SOD and CAT activities, whereas the combination induced exhaustion of antioxidant defenses under oxidative load, reflecting a redox-adaptive response. Molecular analyses revealed downregulation of HIF-1α and VEGF, alongside upregulation of Bax and Caspase-3, confirming suppression of hypoxia-driven survival and activation of the intrinsic apoptotic pathway. Transcriptomic and enrichment analyses further identified modulation of oxidative stress- and apoptosis-related pathways, including phosphoinositide-3-kinase–protein kinase B/Akt (PI3K/Akt), HIF-1 and VEGF signaling. Collectively, these results indicate that Q potentiates Gem cytotoxicity via redox modulation, promoting controlled ROS elevation and apoptosis while suppressing hypoxia-induced survival mechanisms, highlighting the therapeutic potential of redox-based combination strategies against chemoresistant breast cancer.