Generalized *-Lieideal of *-primering


TÜRKMEN S. , AYDIN N.

TURKISH JOURNAL OF MATHEMATICS, vol.41, no.4, pp.841-853, 2017 (Journal Indexed in SCI) identifier identifier

  • Publication Type: Article / Article
  • Volume: 41 Issue: 4
  • Publication Date: 2017
  • Doi Number: 10.3906/mat-1408-52
  • Title of Journal : TURKISH JOURNAL OF MATHEMATICS
  • Page Numbers: pp.841-853

Abstract

Let R be a *-prime ring with characteristic not 2, sigma,tau : R -> R be two automorphisms, U be a nonzero *-(sigma, tau)-Lie ideal of R such that tau commutes with *, and a,b be in R. (i) If a is an element of S*(R) and [U, a] - 0, then a is an element of Z (R) or U subset of Z (R) : (ii) If a is an element of S* ( R) and [U,a](sigma),(tau) subset of C-sigma,C-tau, then a is an element of Z (R) or U subset of Z (R). (iii) If U not subset of Z (R) and U not subset of C-sigma,C-tau, then there exists a nonzero *-ideal M of R such that [R, M](sigma, tau) subset of U but [R, M](sigma,tau) not subset of C-sigma,C-tau . (iv) Let U not subset of Z (R) and U not subset of C-sigma,C-tau . If aUb = a*U b = 0, then a = 0 or b = 0 :