JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, vol.84, no.3, pp.247-260, 2004 (SCI-Expanded)
In this paper, we solve the steady-state form of the Boltzmann transport equation in homogeneous and heterogeneous tissue-like media with a finite element-spherical harmonics (FE-P-N) radiation transport method. We compare FE-transport and diffusion solutions in terms of the ratio of absorption to reduced scattering coefficient, (mu(a)/mu(s)(')) and the anisotropy factor g. Two different scattering phase function formulas are employed to model anisotropic scattering in the slab media with high g-value. Influence of void-like heterogeneities, and of their boundaries with the surrounding medium on the transport of photons are also examined. (C) 2003 Elsevier Ltd. All rights reserved.