Lanthanum(III)hydroxide Nanoparticles and Polyethyleneimine-Functionalized Graphene Quantum Dot Nanocomposites in Photosensitive Silicon Heterojunctions

ANTER A., ORHAN E., ULUSOY M., Polat B., YILDIZ M., Kumar A., ...More

ACS Applied Materials and Interfaces, vol.16, no.17, pp.22421-22432, 2024 (SCI-Expanded) identifier identifier

  • Publication Type: Article / Article
  • Volume: 16 Issue: 17
  • Publication Date: 2024
  • Doi Number: 10.1021/acsami.4c02102
  • Journal Name: ACS Applied Materials and Interfaces
  • Journal Indexes: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Chemical Abstracts Core, Compendex, EMBASE, INSPEC, MEDLINE
  • Page Numbers: pp.22421-22432
  • Keywords: graphene quantum dots, green method, lanthanum(III) hydroxide doping, nanocomposite diode, photosensitivity, rare earth elements
  • Çanakkale Onsekiz Mart University Affiliated: Yes


Lanthanides are largely used in optoelectronics as dopants to enhance the physical and optical properties of semiconducting devices. In this study, lanthanum(III)hydroxide nanoparticles (La(OH)3NPs) are used as a dopant of polyethylenimine (PEI)-functionalized nitrogen (N)-doped graphene quantum dots (PEI-NGQDs). The La(OH)3NPs-dopedPEI-NGQDs nanocomposites are prepared from La(NO)3 in a single step by a green novel method and are characterized by Fourier-transform infrared spectroscopy (FT-IR), ultraviolet-visible spectroscopy (UV-vis), X-ray photoelectron spectroscopy (XPS), and transmission electron microscopy (TEM). Deposited over an n-type Si wafer, the La(OH)3NPs-dopedPEI-NGQDs nanocomposites form Schottky diodes. The I-V characteristics and the photoresponse of the diodes are investigated as a function of the illumination intensity in the range 0-110 mW cm-2 and at room temperature. It is found that the rectification ratio and ideality factor of the diode decrease, while the Schottky barrier and series resistance increase with the enhancing illuminations. As a photodetector, the La(OH)3NPs-dopedPEI-NGQDs/n-Si heterojunction exhibits an appreciable responsivity of 3.9 × 10-3 AW-1 under 22 mW cm-2 at −0.3 V bias and a maximum detectivity of 8.7 × 108 Jones under 22 mW cm-2 at −0.5 V. This study introduces the green synthesis and presents the structural, electrical, and optoelectronic properties of La(OH)3NPs-dopedPEI-NGQDs, demonstrating that these nanocomposites can be promising for optoelectronic applications.