Towards Multireference Equivalents of the HEAT Thermochemical Protocol


Ertürk M., Coşkun M., Köhn A.

JOURNAL OF COMPUTATIONAL CHEMISTRY, cilt.46, sa.31, ss.1-12, 2025 (SCI-Expanded, Scopus)

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 46 Sayı: 31
  • Basım Tarihi: 2025
  • Doi Numarası: 10.1002/jcc.70286
  • Dergi Adı: JOURNAL OF COMPUTATIONAL CHEMISTRY
  • Derginin Tarandığı İndeksler: Scopus, Science Citation Index Expanded (SCI-EXPANDED), Chemical Abstracts Core, Chimica, Compendex, INSPEC, MEDLINE
  • Sayfa Sayıları: ss.1-12
  • Çanakkale Onsekiz Mart Üniversitesi Adresli: Evet

Özet

This study systematically evaluates the performance of internally contracted multireference coupled cluster (icMRCC) wave functions constructed using a full-valence complete active space reference as an alternative electronic structure method within the high-accuracy extrapolated ab initio thermochemistry (HEAT) protocol, thereby assessing the accuracy of icMRCC and exploring its potential for highly accurate thermochemical predictions. By substituting single-reference wavefunctions with multireference (MR) alternatives, we aim to capture complex electron correlation effects, particularly in systems with strong static correlations. Using a benchmark dataset of 22 small first-row compounds, we compare the accuracy of different icMRCCSD(T) methodologies with both single-reference their counterparts and experimental data. Our results align with prior findings, confirming that the intrinsic error of the icMRCCSD(T){4}F method remains well below the chemical accuracy threshold (∼4 kJ mol−1) for thermochemical properties, particularly for atomization energies of molecules with up to 18 correlated electrons. The results underscore the potential of the methods for creating a multireference framework as a high-precision tool for thermochemical applications.