Increased hydrogen transport in microbial fuel cells by using copper based metal organic frameworks doped membrane


UĞUR NİGİZ F., Akel M.

International Journal of Hydrogen Energy, 2024 (SCI-Expanded) identifier

  • Yayın Türü: Makale / Tam Makale
  • Basım Tarihi: 2024
  • Doi Numarası: 10.1016/j.ijhydene.2024.01.197
  • Dergi Adı: International Journal of Hydrogen Energy
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, PASCAL, Artic & Antarctic Regions, Chemical Abstracts Core, Chimica, Communication Abstracts, Compendex, Environment Index, INSPEC
  • Anahtar Kelimeler: Cu-MOF, Microbial fuel cells, Polymer electrolyte membrane, Polyvinylidene fluoride
  • Çanakkale Onsekiz Mart Üniversitesi Adresli: Evet

Özet

The potential of microbial fuel cell (MFC) technology to generate electricity simultaneously with treating organic and inorganic has gained importance, recently. The efficiency of the MFC system varies according to the types of MFCs, types, and areas of electrodes, separators, substrate, etc … In this study, a dual-chamber (H-type, membrane separator) MFC system was set up and used for electricity production from animal manure. A copper-based metal organic framework (Cu-MOF) was synthesized and used in a polyvinylidene fluoride (PVDF) membrane matrix. The water uptake (WU) value, mechanical strength, and cation exchange capacity (CEC) of the membranes were investigated. MFC performances of the pristine and Cu-MOF incorporated nanocomposite membranes were also performed. Effects of the Cu-MOF ratio (from 1 to 4 wt percentage), the operating time, and external resistance on voltage output and power density were evaluated. As a result, the incorporation of Cu-MOF enhanced the CEC from 1.04 mmol/g to 1.77 mmol/g, and the mechanical strength from 0.55 MPa to 1.15 MPa. The highest power density value was obtained as 4.62 mW/m2 by using 3 wt% of Cu-MOF loaded membrane.